Neural network initialization by combined classifiers

نویسندگان

  • Martijn van Breukelen
  • Robert P. W. Duin
چکیده

If a set of linear classifiers in the same feature spaces is combined by a linear output classifier and if each of these classifiers has a sigmoid output function then this set of classifiers has the same architecture as a feed-forward neural network. A combined set of classifiers, however, is trained in an entirely different way. In this paper it is shown that it can be advantageous to use such a set as an initialization for a neural network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Joint Optimization of Spectro-Temporal Features and Neural Net Classifiers

In speech recognition, spectro-temporal feature extraction and the training of the acoustical model are usually performed separately. To improve recognition performance, we present a combined model which allows the training of the feature extraction filters along with a neural net classifier. Besides expecting that this joint training will result in a better recognition performance, we also exp...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

Disjunctive normal networks

Artificial neural networks are powerful pattern classifiers. They form the basis of the highly successful and popular Convolutional Networks which offer the state-of-the-art performance on several computer visions tasks. However, in many general and non-vision tasks, neural networks are surpassed by methods such as support vector machines and random forests that are also easier to use and faste...

متن کامل

Evolution and generalization of a single neurone: I. Single-layer perceptron as seven statistical classifiers

Unlike many other investigations on this topic, the present one considers the non-linear single-layer perceptron (SLP) as a process in which the weights of the perceptron are increasing, and the cost function of the sum of squares is changing gradually. During the backpropagation training, the decision boundary of of SLP becomes identical or close to that of seven statistical classifiers: (1) t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998